Infinite symmetric product

In algebraic topology, the infinite symmetric product SP(X) of a topological space X with given basepoint e is the quotient of the disjoint union of all powers X, X2, X3, ... obtained by identifying points (x1,...,xk−1,e,xk+1,...,xn) with (x1,...,xk−1, xk+1,...,xn) and identifying any point with any other point given by permuting its coordinates. In other words its underlying set is the free commutative monoid generated by X (with unit e), and is the abelianization of the James reduced product.

The infinite symmetric product appears in the Dold–Thom theorem.

References